Package: NobBS 1.0.0

NobBS: Nowcasting by Bayesian Smoothing

A Bayesian approach to estimate the number of occurred-but-not-yet-reported cases from incomplete, time-stamped reporting data for disease outbreaks. 'NobBS' learns the reporting delay distribution and the time evolution of the epidemic curve to produce smoothed nowcasts in both stable and time-varying case reporting settings, as described in McGough et al. (2020) <doi:10.1371/journal.pcbi.1007735>.

Authors:Sarah McGough [aut, cre], Nicolas Menzies [aut], Marc Lipsitch [aut], Michael Johansson [aut]

NobBS_1.0.0.tar.gz
NobBS_1.0.0.zip(r-4.5)NobBS_1.0.0.zip(r-4.4)NobBS_1.0.0.zip(r-4.3)
NobBS_1.0.0.tgz(r-4.5-any)NobBS_1.0.0.tgz(r-4.4-any)NobBS_1.0.0.tgz(r-4.3-any)
NobBS_1.0.0.tar.gz(r-4.5-noble)NobBS_1.0.0.tar.gz(r-4.4-noble)
NobBS_1.0.0.tgz(r-4.4-emscripten)NobBS_1.0.0.tgz(r-4.3-emscripten)
NobBS.pdf |NobBS.html
NobBS/json (API)
NEWS

# Install 'NobBS' in R:
install.packages('NobBS', repos = c('https://sarahhbellum.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/sarahhbellum/nobbs/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3
Datasets:
  • denguedat - Denguedat: Dengue fever reporting data from Puerto Rico

On CRAN:

Conda:

jagscpp

5.06 score 18 stars 32 scripts 189 downloads 4 mentions 2 exports 19 dependencies

Last updated 1 years agofrom:7216e335ac. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 04 2025
R-4.5-winOKMar 04 2025
R-4.5-macOKMar 04 2025
R-4.5-linuxOKMar 04 2025
R-4.4-winOKMar 04 2025
R-4.4-macOKMar 04 2025
R-4.4-linuxOKMar 04 2025
R-4.3-winOKMar 04 2025
R-4.3-macOKMar 04 2025

Exports:NobBSNobBS.strat

Dependencies:clicodadplyrfansigenericsgluelatticelifecyclemagrittrpillarpkgconfigR6rjagsrlangtibbletidyselectutf8vctrswithr